2. Определено влияние числа ударов бичей по початку в зависимости от частоты вращения барабана и величины молотильного зазора.
3. Проведенные эксперименты показали, что обмазываемость початков кукурузы в значительной мере зависит от явления удара бича и положения початка и величины его температуры.
4. Требуется дальнейшее проведение исследований в реальном технологическом процессе для обоснования режимов работы МСУ зерноуборочных комбайнов с бильным молотильным барабаном при уборке кукурузы на зерно, особенно при отрицательной температуре.

Список литературы

Reference

Воздействие первого ряда дисков на почву может быть минимальным. Для обеспечения требуемой глубины обработки предложено следом за почвообрабатывающим ротором установить батарею дисковых рабочих органов без привода от вала отбора мощности трактора. Такая «послойная» обработка почвы устранит возможность возникновения параллельной мощности в трансмиссии трактора и снизит тяговое сопротивление орудия по сравнению с дисковой бороной сравнимой ширины захвата.

КЛЮЧЕВЫЕ СЛОВА: БИОЛОГИЗАЦИЯ ТЕХНОЛОГИЙ ВОЗДЕЛЬВИВАНИЯ СОИ, ЗАДЕЛКА СИДЕРАТОВ, РОТОРНЫЙ ПЛУГ, ПОЧВООБРАБАТЫВАЮЩАЯ МАШИНА

UDC 631.31

Orekhov G.I., Cand. Tech. Sci., Associate Professor,
E-mail: or-gi@mail.ru;
Tsyban A.A., Cand. Tech. Sci., Senior Researcher,
E-mail: tcyban96@mail.ru,
Far East Research Institute of Mechanization and Electrification of Agriculture,
Blagoveshchensk, Amur region, Russia
PROCESS FLOWSHEET OF THE TILLER DESIGNED FOR PLACEMENT OF GREEN MANURE

In order to solve the problem of placement of green manure in biological farming system and avoid reduction of machine and tractor unit capacity a fundamentally new tiller has been developed for primary tillage and simultaneous placement of green manure in topsoil. The process flowsheet of the tiller should provide the absence of increase in number of soil particles of the size less than one millimeter in the topsoil and also provide high-quality technological process in the soils having solidity up to one megapascal. The proposed scheme of arrangement of driven elements enables front row of cutout concave disks (rotor) to have tractor power shaft drive. Its task is to pull up the plants from the soil and bring them down and shred them partially. The influence of front row of disks on soil can be minimized. In order to provide a proper operating depth it has been proposed to install a battery of disk driven elements without tractor power shaft drive behind the tillage rotor. Such layer-by-layer tillage eliminates the possibility of onset of parasitic losses in tractor transmission and reduces draught resistance as compared to disk-harrow of comparable coverage.

KEYWORDS: BIOLOGIZATION OF SOY-GROWING TECHNIQUES, PLACEMENT OF GREEN MANURE, ROTOR PLough, TILLAGE MACHINE

В Амурской области накоплен значительный опыт биологизации технологий возделывания сои, зерновых культур и картофеля. Повышение почвенного плодородия и урожайности сельскохозяйственных культур обеспечивается использованием трёх- или четырёхполных сеялеборотов с полем сидерального пара из естественных засорителей, продуктивность которых в два — три раза превосходит сидерат из сои [4].

Проведение заделки сидератов в верхний слой почвы осуществляется по одной из схем, представленных на рисунке 1. Первая схема включает две технологические операции: измельчение биологической массы косилкой-измельчителем типа КИР-1,5 и её запашку лемешным плугом на глубину 10-15 см. Вторая схема предусматривает укладку травостоя катком с последующим его измельчением дисками и проведением отвальной всапки. По третьей схеме заделка сидератов совмещена с основной обработкой почвы на глубину до 15 см роторным плугом.
Очевидно, что совмещение двух технологических операций снижает трудоемкость и энергоемкость технологии возделывания культур, однако требует применения нового технического средства – роторного плуга. Роторный плуг представляет собой почвообрабатывающую машину с активными рабочими органами – сферическими дисками, имеющими привод от двигателя трактора. Разработано несколько моделей таких машин шириной захвата от 1,3 до 2,4 метра, выпуск которых был освоен в экспериментальном цехе Дальневосточного НИИ механизации и электрификации сельского хозяйства (ДальнНИИМЭСХ) (г. Благовещенск) и на заводе сельскохозяйственного машиностроения Дальсельмаш (г. Биробиджан).

1 схема
- КИР-1,5
- ORKAN 1,50 (Польша)
- КУФ-1,8

2 схема
- ЗКВГ-1,4
- КП-6
- ЗККШ-6

3 схема
- ОВПП-2,4
- ПРН-1,8
- ПРН-2,4
- ПРН-1,3

В настоящее время существуют две технологические схемы роторных плугов – конструкции Дальсельмаш (рис. 2) и ДальнНИИМЭСХ (рис. 3, 4), каждая из которых обладает своими преимуществами и недостатками. В первом случае преимущество является относительная простота конструкции, недостаток – высокая материалоемкость, высокий расход топлива и сравнительно низкая производительность.

Во втором случае преимуществом являются низкая материалоемкость и более высокая производительность, недостатком – трудности в обеспечении проминейности хода агрегата и сравнительно низкая эксплуатационная надежность.

Вследствие того, что сферические вырезные диски при своей работе отрезают пластины почвы, механизм вала отбора мощности трактора испытывает циклическую ударную нагрузку, приводящую к аварийным износам. Чем больше величина заглубления почвообрабатывающих дисков, тем больше вероятность выхода из строя механизмов ВОМ. Этот недостаток присущ обеим технологическим схемам.
Разработанные роторные плуги прошли широкую хозяйственную проверку, в том числе трижды — испытания на Амурской МИС [3]. Из результатов исследований видно, что рабочая скорость почвообрабатывающего агрегата сильно зависит от твердости и механического состава почвы. Так на легких пойменных и супесчаных почвах твердостью обрабатываемого слоя 0,45 — 0,73 МПа скорость агрегата находилась в пределах 1,81 — 2,22 м/с (рис.4).

При повышении твердости почвы до 0,9 — 1,02 МПа рабочая скорость почвообрабатывающего агрегата составляет всего 0,83 — 1,47 м/с. Специалистами Амурской МИС отмечено, что попытки увеличить рабочую скорость МТА приводили к резкому выглублению рабочих органов и нарушению технологического процесса обработки почвы [3]. Наконец, на тяжелых глинистых, а также на задернованных почвах твердостью более 1,5 МПа орудие теряет работоспособность вследствие того, что ротор не может заглубиться более чем на 3 — 5 см.
В связи с тем, что рабочими органами роторного плуга являются врачающиеся вырезные сферические диски, рабочая скорость почвообрабатывающего агрегата зависит от толщины почвенного пласта (b), отрезаемого зубом диска. Чем выше твердость почвы и её связанность, тем больше должно быть усилие на деформацию почвенного пласта. Соответственно, чем выше твердость почвы, тем больше должен быть показатель кинематического режима (отношение линейной скорости зуба ротора к поступательной скорости агрегата) λ.

При частоте вращения ротора n=125-135 мин⁻¹ показатель кинематического режима λ для разных типов почв и агрономов находился в пределах 1,42 – 4,99 (рис.5).

Очевидно, что для работы на твердых почвах показатель λ необходимо увеличить. Однако с увеличением λ интенсивность крошения почвы возрастает, что может привести к увеличению количества эрозионно-опасных частиц размером менее 1 мм в верхнем слое почвы, что недопустимо по агротехническим требованиям к основной обработке почвы.

Увеличение λ за счет снижения рабочей скорости ведет к нежелательному снижению производительности МТА. Увеличение же частоты вращения ротора влечет за собой возрастание мощности, передаваемой через ВОМ трактора, а, соответственно, снижение ресурса трансмиссии трактора. Снизить значение передаваемой на ротор мощности возможно путем уменьшения рабочей ширины плуга, что также негативно отразится на производительности почвообрабатывающего агрегата.

Для обеспечения надежности проведения технологического процесса на почвах различной твердости без снижения производительности МТА необходимо разработать принципиально новое орудие для основной обработки почвы с одновременной заделкой сидератов в верхний слой почвы в технологии биологизированного производства сельскохозяйственных культур, технологическая схема которого должна обеспечить:
- отсутствие роста количества частиц почвенных размером менее 1 мм в верхнем слое почвы;
- качественное осуществление технологического процесса на почвах с твердостью до 1 МПа.

Разрабатываемая почвообрабатывающая машина для технологии биологизированного производства сельскохозяйственных культур должна отвечать следующим требованиям:

1. Производить «вырывание» растений из почвы, их частичное измельчение и заделку в верхний (0 – 15 см) слой почвы.
2. Обеспечить надёжную работу не только на легких, но и на тяжелых твердых почвах без снижения производительности МТА.
3. Величина нагрузки, передаваемой валом отбора мощности трактора, у разрабатываемой машины должна быть значительно ниже, чем у существующих конструкций роторных плугов.

4. После прохода машины не должно наблюдаться увеличения количества эрозионно-опасных частиц почвы (размером менее 1 мм) в верхнем слое (0 – 5 см) почвы.
5. Конструкция машины должна обеспечить прямолинейность хода агрегата без дополнительных усилий со стороны тракториста и устранить условия для возникновения «паразитной» мощности в трансмиссии трактора.

Для обеспечения этих требований предлагаются следующие технические решения. Рабочими органами, проводящими «вырывание», измельчение и заделку растений в почву, должны быть сферические вырезные диски, которые за много лет доказали свою функциональную пригодность для проведения этих работ.

Второе и третье требования к почвообрабатывающей машине, на первый взгляд – взаимоисключающие. В существующих роторных плугах обеспечение работы на тяжелых почвах предполагает
увеличение значения кинематического режима МТА \(\lambda \). За счёт повышения частоты вращения ротора, ведущей к увеличению нагрузки на ВОМ.

Снизить значение мощности, передаваемой ВОМ трактора при увеличении \(\lambda \) можно путем уменьшения глубины обработки ротором с 15 до 5 – 7,5 см. Такое двух- или трехкратное снижение глубины обработки значительно уменьшит величину нагрузки на почвообрабатывающий ротор, а, соответственно, и на ВОМ трактора, повысив надежность его работы. Для обеспечения требуемой глубины обработки 15 см предлагается следом за почвообрабатывающим ротором установить батарею дисковых рабочих органов без привода от ВОМ трактора (рис. 6).

![Рис. 6. Схема расстановки рабочих органов по глубине](image)

При предложенной схеме расстановки рабочих органов передний ряд сферических вырезных дисков (ротор) имеет привод от ВОМ трактора и вращается с угловой скоростью \(\omega \). В его задаче входит «вырывание» растений из почвы и их сваливание с частичным измельчением. Воздействие первого ряда дисков на почву может быть минимальным. Вследствие этого появляется возможность увеличения значения кинематического режима МТА \(\lambda \) без снижения производительности МТА и значительной нагрузки на ВОМ трактора.

Сферические диски второго (заднего) ряда не имеют привода и не увеличивают нагрузку на ВОМ. Задний ряд дисков производит обработку почвы на необходимую глубину с одновременным перемещением почвы с вырытыми растениями. Такая расстановка рабочих органов повысит относительное значение мощности трактора, затрачиваемой на преодоление тягового сопротивления. В отличие от роторных плугов, где на преодоление тягового сопротивления в среднем расходовалось всего 3,6 – 4,1% потребляемой мощности агрегата [3] и имелись предпосылки для возникновения «паразитной» мощности в трансмиссии трактора, в предлагаемой схеме основная часть потребляемой мощности будет расходоваться на преодоление тягового сопротивления пассивных дисковых рабочих органов. Вследствие того, что задняя секция производит обработку частично деформированной почвы, её тяговое сопротивление будет значительно ниже, чем могло бы быть в случае обработки уплотненной почвы.

Технологическая схема технического средства для основной обработки почвы (рис. 7) разработана на основании патентов на изобретение, полученных ДальНИИМЭСХ [1, 2].
Таким образом, такая «пластовая» обработка почвы должна устранить возможность возникновения паразитной мощности в трансмиссии трактора и снизить тяговое сопротивление орудия по сравнению с дисковой бороной сравнимой ширины захвата.

Как и во всех почвообрабатывающих машинах, рабочими органами которых являются сферические диски, установленные под углом к направлению движения машинно-тракторного агрегата, при работе существующих конструкций роторных плугов возникают реакции почвы, создающие разворачивающий момент относительно кинематического центра, что отрицательно сказывается на управляемости МТА. Технологическая схема разрабатываемого орудия предполагает, что сферические диски переднего ряда работают «вразвал», а заднего — «всвал». Реакции почвы, возникающие при работе дисков заднего ряда также создают разворачивающий момент, который компенсирует разворачивающий момент от работы дисков переднего ряда, способствуя повышению курсовой устойчивости агрегата.

Список литературы

2. Рotor почвообрабатывающий навесной: пат. 2581666 Российская Федерация: МПК A01В7/00; A01В5/00 / М. В. Канделя, А. Н. Панасюк, П. А. Шилько, Е. Г. Пономарев, Н. И. Орехов: заявитель и патентобладатель Федеральное государственное бюджетное научное учреждение «Дальневосточный научно-исследовательский институт механизации и электрификации сельского хозяйства» (ФГБНУ ДальНИИМЭСХ). — опубл. опубл. 20.04.2016.

3. Протокол испытаний на Амурской МИС роторного плуга за 2008 год, 14 с.

Reference

УДК 631.363:636.087.7
ГРНТИ 55.57.43
Шишкін В. В., канд. с.-х. наук;
Михалёв В. В., канд. с.-х. наук, ст. науч. сотр.;
Усанов В. С., мл. науч. сотр.
ФГБНУ ДальнНИИМЭСХ,
г. Благовещенск, Амурская область, Россия
E-mail: dalniimesh@gmail.com
ОПТИМИЗАЦИЯ ОДНОРОДНОСТИ СМЕШИВАНИЯ КОМПОНЕНТОВ КОРМОВОЙ ДОБАВКИ, ПОЛУЧАЕМОЙ ЭКСТРЕРУРИРОВАНИЕМ МИНЕРАЛЬНО-ОБОГАЩЕННОГО ЗЕРНА СОИ

Основным фактором, оказывающим влияние на жизнедеятельность сельскохозяйственных животных, является обеспечение их физиологических потребностей. В кормлении это реализуется включением в рацион балансирующих кормовых добавок, комбикормов и премиксов, включающих оптимальное количество всех нормируемых питательных веществ, с учетом зональных природно-климатических особенностей региона. Решение проблемы белкового дефицита при кормлении сельскохозяйственных животных в условиях Дальневосточного федерального округа, в том числе Амурской области, основано в России производителя зерна сои, связано с повышением эффективности его использования в кормопроизводстве. Получение на основе соевого зерна белковых кормовых добавок, обогащенных минеральными веществами, в целях улучшения протеинно-минеральной питательности рационов кормления скота в условиях Приамурья, как биохимической провинции, является целесообразным. При этом кормление одной соей малоэффективно, так как животным необходимо получать с кормом микро- и макроэлементы. Для снижения их дефицита в кормах применяются белково-витаминные минеральные добавки (БВМД), рецептуры которых необходимо разрабатывать и реализовывать с учетом природно-климатических и